Some thoughts on Narrow-band Ultra-low-power Radio and Energy Harvesting

Andrew S Holmes

Optical and Semiconductor Devices Group
Department of Electrical and Electronic Engineering
Imperial College London

Hermes Workshop, 9-10 September 2010
Narrow-band ultra-low-power radio

Intensive research on UWB for short range, high data rate applications, e.g. video & audio over WBAN, data transfer computer ↔ peripherals

UWB claims many advantages, including:

- robustness
- interoperability
- high bit-rate capability
- low power (potentially at least)

Q: Is there a place for narrow-band ultra-low power radio in WBAN / WSN?

Possible reasons for a ‘Yes’:

- lower ultimate operating power?
 - depends on detailed scenario: range, data rate, channel
- more tractable antenna problem
 - smaller antenna at given centre frequency
 - easier to achieve desired radiation pattern over bandwidth
ULPR transceivers

Typical low-power, narrow-band transceiver from literature (e.g. UC Berkeley):

SR design leads to very simple circuit, with potential for very low power
RX sensitivity not the best, but adequate for some scenarios
Significant amount of redundancy – can we simplify even further?
ULPR transceivers - simplifications

• At very short range (ca 1 m), radiated power becomes very small, and circuit losses dominate power consumption of transmitter circuit

⇒ should be able to improve efficiency by eliminating power amplifier

• With PA eliminated, (loop) antenna can be incorporated into oscillator as part of resonant circuit to make true “oscillator transmitter”

• Frequency reference – e.g. SAW/BAW/FBAR – probably still required in most applications, but may be able to operate on low duty cycle (cf “lock & roll” radio) depending on linewidth requirements

• Maybe even re-use the same oscillator/antenna configuration for transmitter and SR receiver … not done, and maybe a step too far, but attractive if feasible
ULPR transceiver proposal

Based on the arguments on previous page:

Open questions:

Can same oscillator/antenna really be used as basis of TX and RX?
 - Sensitivity? Re-radiation? Antenna loading?

What frequency control scenarios are possible?
 - Continuous? Periodic? None?

Is OOK modulation by power cycling really viable?
 - Start-up time & chirp? Robustness/interoperability?
ULPR work at Imperial - antenna sizing

Analysis of power transfer (near and far field) between loop antennas as function of antenna size, frequency and range

The electrical size can be chosen such that the single-turn loop antenna will exhibit both a high Q factor (for oscillator linewidth) and efficient radiation

Found that, for given antenna size constraint, optimal frequency in terms of power transfer corresponds to electrical size of $2\pi a/\lambda \sim 0.2$
ULPR work at Imperial [2] – TX optimisation

Analysis of Colpitts/cross-coupled oscillator transmitters to determine bias current required for successful data transfer under different conditions (antenna size constraint, operating frequency, circuit design)

Graph shows – for Colpitts oscillator TX - preferred operating frequency from ISM bands, and minimum bias current for data transfer over 1 m range, as function of maximum allowed antenna size

Analysis is optimistic in assumptions about channel, but nevertheless results suggest that a transmitter with a mm-scale antenna should be able to achieve 1 Mbps over 1m with a TX power consumption below 10 μW

ULPR work at Imperial [3] – TX prototyping

Antenna size: 3cm diameter (circ. to wavelength ratio of 0.14 at 434 MHz)

434 MHz oscillation starts up with sub- 20 uA bias current (detected using spectrum analyser fed by similar loop antenna)
Self-powered wireless duct sensor

Battery-less sensor comprising: 2 cm-dia shrouded turbine + power conditioning electronics, microcontroller, temperature sensor and osc transmitter

2 kb/s data transfer to commercial SR receiver module demonstrated

Kick-and-resonate transmitter

Limit of simplification?

Sensor output provides priming voltage for motion-driven electrostatic generator

Generator discharged through resonant loop antenna sized for high Q and efficient radiation

Kick-and-resonate transmitter demo

Successful transmission and detection achieved over 1m
Increased frequency will allow smaller antenna
Need to improve fidelity of detection system and reduce working priming voltage range

Capacitively tapped measurement of the discharge of the harvested power through the loop antenna showing oscillation at 330 MHz.

Detection of oscillation primed by 1 V, at a distance of 1 m.
Energy harvesting – downscaling

At micro-scale (and probably even sub-mm-scale) there is little prospect of energy harvesting from “already present” ambient energy sources. This is not being defeatist; it is just being realistic.

Wireless energy distribution from an installed source or “beacon” is an attractive solution. This was in NAWIS… nevertheless we should not dismiss it!

Beacon delivers power – either by flooding local environment or via directed beams; motes accumulate energy and re-radiate to communicate peer-to-peer or with higher level node

Energy exchange between motes also a possibility

For small motes, mm-Wave or THz look attractive. Should we be looking for additional partners for this?

Could also look at optical power delivery for some scenarios
EM power delivery – initial work at Imperial

Simulation (Agilent ADS) of energy harvesting rectennas over 0.1 - 100 GHz

Comparison of different zero-bias Schottky diode detectors: HSMS-2850, SMS-7630, and MZBD-916

Comparison of different topologies: series, shunt, voltage doubler

Comparison of different topologies: series, shunt, voltage doubler

Conversion efficiency vs input power and frequency for matched series rectenna with MZBD-9161 diode

MZVD-9161 achieves 7% conversion efficiency at 60 GHz with 0dBm power input – this is useful

See: “Analysis of scalable rectenna configurations for harvesting high frequency ambient radiation”, M. Pinuela, P.D. Mitcheson, S. Lucyszyn, to be presented at PowerMEMS 2010
Energy harvesting - priming

Harvester and power conditioning electronics must be able to start “from cold”
Need to be able to generate ~ 0.5 V for priming, and this is increasingly difficult as devices size shrinks
Possible solutions: electret; micro-battery; radioactive battery
Radioactive approach is particularly interesting because of very long lifetime e.g. work at Cornell Univ:

From: A. Lal et al, Pervasive Computing 4, pp. 53-60 (2005)

Can/should we try to build collaboration here? We bring piezo and power conversion/conditioning expertise
Energy harvesting - transduction

With downscaling it becomes increasingly difficult to realise an effective (strong) electromechanical damper for transduction.

This is one of the main reasons for the poor performance of most energy harvesters to date.

Piezo devices most promising and can be further enhanced through research on:

Materials – e.g. piezo nanostructures (Univ Houston and others)
Pre-biasing and related methods…

\[
FoM_V = \frac{\text{Useful Power Output}}{\frac{1}{16} \rho_A u V o^{4/3} Y_0 \omega^3}
\]
Putting a bias charge on the piezoelectric layer (pre-charging C_T) makes it impose a higher mechanical load on the beam, allowing more energy to be extracted when the beam moves.

Pre-charging and discharge must be carefully synchronised with beam motion.

Technique demonstrated giving power output increase of 20 times over resistive load.
Piezoelectric pre-biasing [2]

Upper graph: idealised voltage waveforms to achieve increased damping

Lower graph: measured results showing up to ~11× increase in net output power over simple resistive load

Summary

Interesting areas for us, mainly building on existing activities (at various stages of development):

- Pushing power limits of narrow-band, short-range ultra-low power radio – mainly through simplified architectures with antenna/RX/TX co-design

- mm-Wave / THz power delivery – new area for us, but we have been building links with other groups at Imperial and across UK

- Vibration energy harvesting – improving conversion efficiency of piezo devices; priming technologies (would need to be in collaboration others)