Ultra-low-power integrated radios for wireless body area networks

Vincent Peiris
RF and Analog IC group, CSEM
Outline

- **WBAN requirements**

- **Three cases of ultra-low-power 1V SoC and MEMS-based radios**
 - icyHeart - A 1V RF & DSP SoC in 0.18um
 - WiserBAN – A 1.2V MEMS-based radio microsystem
 - icyTRX - A 1.0V BLE-compliant transceiver

- **Conclusions**
Context of Wireless Body Area Networks

WBAN and requirements for radio ICs
What is WBAN?

- Wireless Body Area Networks (WBAN) is about autonomous wireless sensors distributed in-, on-, or around a person.

- WBAN will support solutions and applications that will help people to live better, at home, at work, in hospitals and on the move.
About autonomy

- «Tomorrow»: Virtually zero-energy circuits and Energy Harvesting

- «Today»: Industry uses batteries
 - Tiny batteries: well-known, widely used, fairly reliable, more or less low-cost
 - Supply range $\sim 3V..2V$: Lithium MnO2 coin-cell
e.g. CR2032 used in many lifestyle applications, rechargeable Li cells, etc
 - Supply range $\sim 1.5V..1V$: Zn-Air, Silver-O2 button-cell
e.g. ZA13 for hearing aids, wristwatches

Source: Renata
About miniaturization

More Than Moore

Digital
Analog/RF
MEMS
Sensors
Energy Harv.

180nm
130nm
90nm
65nm
45nm
...

MEMS+RF IC

ULP RF SoC’s

More Moore

Digital radios

Source: Intel

Zero-energy RF SiP

Source: Cymbet

Source: Intel

Digital radios

Source: Cymbet

Digital radios

Source: Cymbet
About flexibility

- From **simple** applications...
 - e.g. peer-to-peer sports monitors, wristbands, etc

- ...to more **complex** cases:
 - e.g. hearing aids, bio-medical applications, etc
Three representative cases
Three ULP cases for WBAN

(1) icyHeart (2) WiserBAN (3) icyTRX

- Low voltage
 (1V .. 1.2V)

- Low active power
 (few mW’s)

- Narrow-band radios
 (900MHz – 2.4GHz)
Three ULP cases for WBAN

<table>
<thead>
<tr>
<th></th>
<th>(1) icyHeart</th>
<th>(2) WiserBAN</th>
<th>(3) icyTRX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete RF SoC</td>
<td>Complete RF SoC</td>
<td>Very tiny SiP</td>
<td>Tiny RF IC</td>
</tr>
<tr>
<td>High link budget</td>
<td>High link budget</td>
<td>Lower</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>(110 dB)</td>
<td>(85 dB)</td>
<td>(95 dB)</td>
</tr>
<tr>
<td>Proprietary</td>
<td>Proprietary</td>
<td>Proprietary</td>
<td>Standard BT LE</td>
</tr>
<tr>
<td></td>
<td>(900MHz)</td>
<td>(2.4 GHz)</td>
<td>(2.4GHz)</td>
</tr>
<tr>
<td>Average</td>
<td>Average</td>
<td>Good Energy/bit + Fast wake-up</td>
<td>Good</td>
</tr>
</tbody>
</table>

Vincent Peiris

Hermes Workshop - ISMICT’2014
A power-efficient radio SoC for wireless ECG

Case 1 - icyHeart
Concept

- A power-efficient radio SoC for wireless ECG
 - Home patient health monitoring w. handheld device
 - Health monitoring in medical environment
 - Health monitoring in extreme environments

ECG sensors

Handheld monitor

Vincent Peiris

Hermes Workshop - ISMICT’2014

16
System-on-chip (SoC) approach

- RF, w. ADC for sensors, DSP and PMU
- PMU: Low-voltage 1.0-1.8V and 2.0-3.6V
- Real-time ECG A/D signal proc. on-chip

Vincent Peiris

Hermes Workshop - ISMICT’2014
Die photography

- 0.18μm, plain digital CMOS process, 5mm x 5.3mm

- RF transceiver 8%
- Digital 28%
- Oscillators & LED drivers 4%
- Sensor Interface & ADC 6%
- Power Management 6%
- Padrning 12%
- ROM 2%
- RAM 34%
Key performance

First 1V RF + DSP + ECG sensor A/D proc. on-chip

Sensor interface
- 100uW / channel (x3) - 12b ENOB acq.
- ChainFFT-256 in 2.6k clk cycles - 120µA/MHz @ 1V

Radio section
- True 1V radio
- Rx: 3.5mA (1V) with -100dBm sensitivity (FSK 200kb/s)
- Tx: -5dBm with 4.5mA (1V). 10dBm option.

Industrial grade, ready for production
Smart miniature low-power wireless microsystem for Body Area Networks

Case 2 - WiserBAN
Concept

- Miniature WBAN node integration driven by implanted and body-worn **healthcare** and **lifestyle** scenarios
A 2.4GHz RF Microsystem

- Heterogeneous microsystem – **4mm x 4mm x 1mm³** SiP
 - Miniature antennas

 SiRes MEMS
 - 2.4GHz RF & DSP SoC
 - Propagation study
 - 2.4GHz RF & DSP SoC

 WiserBAN SiP
 - BAW & SAW RF devices
 - WBAN protocol

Vincent Peiris

Hermes Workshop - ISMICT'2014

:: csem
SoC architecture – Rx section

- Sub-sampling RX
- RF+IF SAW/BAW filters
- Dig BB with SAR ADCs
SoC architecture – Tx section

- Direct mod TX
- BAW 2.048 GHz ref
- LF SiRes for RTC
Transmitter

- TX spectrum compliant with BT Smart and Zigbee masks
- 0dBm output power at 9.2mW, up to 4Mbps (2.3nJ/bit)
Current breakdown

- TX start-up consumption equivalent to 3us TX operation
- \(~1/36\) compared to XTAL start (1ms x 1mW = 1\(\mu\)J)
- 620nJ for 32 bytes packet at 4Mbps; 5% startup overhead

27.5 nJ for Tx startup

- DBB: 4%
- Bias: 5%
- (P)PA: 21%
- BAW: 30%
- LO: 30%
- Tx Synth.: 40%

9.2 mW in Tx mode

- DBB: 3%
- Bias: 3%
- BAW: 30%
- LO: 9%
- Tx Synth.: 23%
- (P)PA: 62%
Die photography

- 65nm CMOS
- Flip-chip within SIP module
- Tiny 4.6mm²
SiP approach (I)

- Ultimate miniaturization
- Standalone 4x4x1mm³ TRX module
- Lamination within FR4
 - MEMS
 - ASIC
 - Passives
- Cost effective mass production
SiP approach (II)

- Modular 3D stacking of 2D modules
 - 2D module with WiserBAN SoC
 - 2D module with passives, MEMS, ...
 - 2D module with miniature 2.4GHz antenna
A Low Power 2mm2 2.4GHz Transceiver for Bluetooth Smart, IEEE 802.15.4 and Proprietary Applications

Case 3 - icyTRX
Concept

- 2.4GHz transceiver (e.g. BT LE) as standalone companion chip or IP block
 - Battery powered
 - Easily plugged onto existing systems w/o system revolution
 - Tiny (<2 mm²)
 - ULP (<10 mW)
 - Easy to use & reduced BOM

icyTRX RF IC
2.4GHz IC/IP (BLE RF transceiver)

BLE Controller (protocol engine)

Applicative IC (sensor interfaces, power management, signal processing, application)

Source: RivieraWaves

Vincent Peiris
Hermes Workshop - ISMICT’2014
Architecture

- High degree of integration
 - RF-interface: single port, integrated matching
 - 48MHz Crystal
 - SPI / I2C interface to external controller

Vincent Peiris
Hermes Workshop - ISMICT’2014
Die photography

- **65nm CMOS, 2mm²**
Rx measurements

- **Sensitivity vs Temp and Supply** – 65nm version

![Graph showing sensitivity vs input power for different temperatures and supplies.]

- At 27°C, 1.1V:
 - -97 dBm @ 1Mb/s
 - -95 dBm @ 2Mb/s
 - -90 dBm @ 4Mb/s

- At 70°C, 1.32V:
 - -99 dBm @ 1.3V

Vincent Peiris

Hermes Workshop - ISMICT’2014
Rx measurements

Operation at 0.9V

-97 dBm @ 0.9V @ 0°C
-93 dBm @ 0.9V @ 50°C
Tx Measurements

- Output spectrum & resulting eye diagram

Frequency = 2448 MHz
Power = 0 dBm

- BLE mask
- Carrier only
- GMSK 1 Mbit/s
- MSK 1 Mbits/s

GMSK - 1 Mb/s

4FSK - 4 Mb/s
Overview – icyTRX 65nm

- Supply voltage: 1V nom.
- 250kb/s ... 4Mb/s (4-FSK)
- BTLE mode, **Receiver**
 - 1.0V: -97dBm w. 4.6mA
- BTLE mode, **Transmitter**
 - 1.1V: 0dBm w. 8.1mA
 - 1.0V: -1.5dBm w. 7.0mA
 - 0.9V: -3.6dBm w. 5.9mA
- **Fast PLL**
 - 5us settling
- **High degree of integration**
 - No external RF passives, on-chip 50ohm matching
Conclusion
In summary...

- **WBAN is a challenging category of WSN**
 - Low-energy operation: e.g. few mW active power
 - Using tiny low-voltage batteries: e.g. as low as 1V

- **Miniaturization is a must**
 - ULP RF SoC is mature for combining analog + mixed-signal + DSP + RF
 - MEMS+IC approaches bring novel perspectives in terms of miniaturization

- **Need to build on standard and/or proprietary protocols**
 - BT LE is a promising candidate but calls for innovative ultra-low-power chips

- **Three cases were shown to illustrate those challenges**
Acknowledgments

- F. Pengg, D. Ruffieux, E. Le Roux, D. Barras, A. Vouilloz, N. Scolari, N. Raemy and other members of the “Integrated and Wireless Systems” division at csem

- EU-WiserBAN and EU-icyHeart consortium partners, and the EU Commission

- Hermes Workshop organizers for the invitation
Thanks!

- More insight on low-power microelectronics for WBAN?
 - vincent.peiris@csem.ch